
ensures that the flow within the pipe remains
streamlined and rapid (an extra benefit is
suppression of the jet break-up as it leaves the
nozzle). This is one of the few known practi-
cal applications of elongational viscosity, as
opposed to the widespread use of polymers
to increase shear viscosity, such as the thick-
ening of foodstuffs by starch, a naturally
occurring polymer. So it is intriguing, as
noted by Bergeron et al., that the same elon-
gational viscosity should act to reduce rather
than increase flow, thereby suppressing the
rebound of water droplets.

To confirm their theory, Bergeron and
co-workers4 show that drops of a polymer
solution with a high extensional viscosity
retract at the same speed as drops of poly-
mer-free water thickened to the same high
viscosity by mixing with glycerol. Such evi-
dence is circumstantial but persuasive: the
implication is a new and unexpected demon-
stration of extensional viscosity, and may
find applications in other areas where rap-
idly deforming thin films are involved. An
extra bonus of this system, as the authors
point out, is that the shear viscosity of their

dilute solutions remains almost indistin-
guishable from that of pure water, ensuring
that little viscous friction is encountered
while handling and pumping the liquids.
The high elongational viscosity becomes
important only when it is needed — during
the rapid deformation of the retracting drop.
Not an intelligent liquid, perhaps, in view of
its simplicity, but certainly a smart one. ■
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The ability to repair damaged tissue in the
human nervous system has long been a
goal of neurobiologists. Writing in Pro-

ceedings of the National Academy of Sciences,
Todd Holmes and colleagues1 describe a
promising biomaterial for this purpose. It
consists of a peptide scaffold that can act as a
substrate for the attachment of neurons, and
allows the growth of nerve fibres and the for-
mation of synapses — the specialized con-
nections between neurons. It is early days as
yet, but the idea is that such artificially grown
tissue could be transplanted into patients. 

Repairing nervous tissue is no easy task.
Cell replenishment happens in many other
adult mammalian tissues, but very few new
neurons are produced in the adult central
nervous system. Moreover, the outgrowth of
fibres from regenerating neurons into dam-
aged areas is controlled by various molecules
that can promote or inhibit the process; and
neurons that lack an appropriate substrate
cannot regrow and are vulnerable to self-
destruction through apoptosis. An ideal
transplantable substrate for repairing dam-
aged tissue in the nervous system should
support neuronal attachment, fibre out-
growth, and survival and formation of active
synapses. Such a substrate should be well 
tolerated in vivo.

Development of the new peptide-scaffold
biomaterials1 started with a serendipitous

glutamate residues (E in single-letter amino-
acid code) and positively charged lysines (K),
separated by hydrophobic alanines (A). This
arrangement gives EAK16 two distinct polar
and non-polar surfaces. 

Much to their surprise, Holmes and Zhang
observed the formation of macroscopically
well-ordered, thin-sheet structures in the
neuronal cultures into which EAK16 was
introduced; moreover, there was no measur-
able neurotoxicity in the cultures exposed to
the peptide. They went on to find out that the
formation of the macroscopic sheet struc-
tures from EAK16 depended on millimolar
levels of monovalent salts. Scanning electron
microscopy of the sheet structures revealed a
fibrous assembly of the EAK16 material. The
openings between the microscopic fibrils
were small enough to exclude cells, but large
enough to allow the passage of macromol-
ecules. Holmes, Zhang and colleagues devised
a molecular model for the salt-induced for-
mation of the EAK16 material and published
their findings in 1993 (ref. 2). 

The sequence of EAK16 has some simi-
larity to the RGD (arginine-glycine-aspar-
tate) sequence that is characteristic of some
integrin receptors, molecules that are central
players in cell adhesion and nerve-fibre out-
growth. On making the EAK16 derivatives
RGD16 and RAD16, Holmes and Zhang
found that the RAD16 peptide formed stable
macroscopic sheets in solutions containing
salt at physiological levels. In contrast, no
macroscopic materials were formed from
the RGD peptides. With the help of Michael
DiPersio, they tested the hypothesis that cells
would attach and grow on the RAD16 pep-
tide biomaterials in an integrin-dependent
fashion. They found, however, that both
EAK16 and RAD16 peptide biomaterials
robustly supported the attachment and
growth of many types of non-neural primary
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observation by Holmes and Shuguang
Zhang, another of the authors on the paper.
Holmes was testing the neurotoxicity of 
peptides in neuronal cultures, and Zhang
provided him with the so-called EAK16 pep-
tide for the purpose. As its name implies,
EAK16 is 16 amino acids long, and it is made
up of repeating units of negatively charged 

Figure 1 Synaptic activity of neurons grown by Holmes et al.1 on their peptide scaffolds. The neurons
concerned come from rat hippocampus; the fluorescent dye is indicative of neurotransmitter release.
(Reproduced from ref. 1.)
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and transformed cells3. Many of the cell 
types completely colonized all surfaces of 
the peptide-based sheet biomaterials, giving
the appearance of tissue. 

Remarkably, the new paper1 shows that
these peptide biomaterials also support 
neuronal survival. Robust networks of nerve
fibres grew from both primary neurons and
neuron-like transformed cells on the RAD16
scaffold, and to a lesser extent on the EAK16
scaffold. Furthermore, the neurons formed
functional synapses, as shown by labelling
with a fluorescent dye that was taken up into
vesicles following neurotransmitter release
at synapses (Fig. 1). There were no immuno-
logical or inflammatory reactions when the
peptides were injected into rat muscle. 

Inflammatory reactions in muscle and
brain are quite different, however. So these
peptide-based biomaterials will have to suc-
ceed in tests of how well they are tolerated in
brain, spinal cord and peripheral nerves if
they are to be useful for repairing damaged
nervous tissue. (Preliminary results, which
show that they do not elicit a significant
adverse cellular reaction when introduced
into brain, provide cause for optimism; T.
Holmes and colleagues, personal communi-

cation.) Beyond that, we now know of
numerous receptors and ligands that medi-
ate neuronal attachment, survival, nerve-
fibre outgrowth, synapse formation and
modification of synaptic strength. The
incorporation of such molecular cues into
the peptide scaffolds would be necessary to
add further specificity for the attachment
and directed outgrowth of particular neu-
rons and nerve fibres. Finally, thorough 
animal trials with different types of acute 
and chronic neural damage would have to 
be carried out before even contemplating
trying this approach in humans. 

Clearly, the aim of repairing a damaged
nervous system remains a long way off. But
the further development of biological mat-
erials, and the possibility of combining them
with cell-based therapies, may bring us 
closer to realizing that goal. ■
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The most resounding achievement of
mathematics in the twentieth century
may well have been the proof of Fermat’s

last theorem. As readers of Nature may be
aware1, Pierre de Fermat stated this result 
in the margin of a treatise by the Greek 

mathematician Diophantus, along with the
remark that he would write the proof some-
where else, because the margin was too small
to contain it. That proof has been missing
for three and a half centuries, if it ever 
existed, and in 1993 Andrew Wiles finally
supplied a different one, using methods 
way beyond anything Fermat could have
known2. Wiles’ solution involved a partial
proof of another difficult problem, known
as the Shimura–Taniyama–Weil conjecture,
and this conjecture has finally been proved
in full by Christophe Breuil, Brian Conrad,
Fred Diamond and Richard Taylor3.

Fermat’s theorem states that, for any
nà3, the only integer solutions of the equa-
tion an&bn4cn are the obvious ones, where
a, b or c are 0. For n41 there are, of course,
many other solutions, and for n42 we have
the solution a43, b44 and c45 (a rectangle
triangle with integer sides). That such solu-
tions don’t exist for higher values of n is 
surprising, but it is tempting to think that the
problem would yield to a bit of smart alge-
braic manipulation. It does not: generations
of amateur mathematicians have tried to do
it this way, and failed.

The breakthrough came from another
direction: the theory of elliptic curves. These
are curves in two variables, x and y, def-
ined by a cubic equation of the form
y24x3&px&q. They can be plotted as
points in the x–y plane (Fig. 1), and they have
remarkable properties that have captivated
mathematicians for centuries. Let me quote
just one of them: an elliptic curve has a 
natural group structure. Group theory is the
mathematics of symmetry, and a mathemat-
ical group is just a set of elements that can be
combined together in pairs to yield another
element of the set.

For an elliptic curve (Fig. 1), this group
operation is defined geometrically. Given
two points A and B on the curve connected
by a straight line, the straight line will inter-
sect the curve at a third point C (because 
the equation defining the curve has degree
three). If the curve is reflected about the 
x-axis, the curve itself remains unchanged,
but the point C is changed to point D. As 
a function of A and B, point D obeys a 
group law that requires operations to be
associative — that is, A(BD)4(AB)D. There
are two other algebraic laws that define
group structure: the existence of the inverse
of any element, and the existence of an iden-
tity element. Both of these are true of elliptic
curves.

Fifty years ago, Shimura, Taniyama and
Weil conjectured that all elliptic curves
would be ‘modular’ — a property described
in Box 1. In mathematics, a conjecture is
something that is believed to be true but is
still waiting for a proof. Interest in the
Shimura–Taniyama–Weil conjecture was
rekindled in 1996, when Gerhard Frey and
Ken Ribet observed that if integers a, b and c
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Figure 1 An elliptic curve of the form y24x31x2&0.25. What makes elliptic curves worth studying is
their natural group structure. The group operation follows from connecting points A and B by a
straight line, projecting the line to find a third point C, and then reflecting this point about the x-axis
to give point D. Andrew Wiles proved Fermat’s last theorem by studying a particular elliptic curve,
which involved a partial proof of the Shimura–Taniyama–Weil conjecture. This conjecture has been
proved in full by Breuil, Conrad, Diamond and Taylor3,4.
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